
Scalable Collective Communication on the ASCI Q Machine
�

Fabrizio Petrini Juan Fernandez Eitan Frachtenberg
Salvador Coll

CCS-3 Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory, Los Alamos, NM 87545 USA�
fabrizio,juanf,eitanf,scoll � @lanl.gov

Abstract

Scientific codes spend a considerable part of their run
time executing collective communication operations. Such
operations can also be critical for efficient resource man-
agement in large-scale machines. Therefore, scalable col-
lective communication is a key factor to achieve good per-
formance in large-scale parallel computers.

In this paper we describe the performance and scala-
bility of some common collective communication patterns
on the ASCI Q machine. Experimental results conducted
on a 1024-node/4096-processor segment show that the net-
work is fast and scalable. The network is able to barrier-
synchronize in a few tens of � s, perform a broadcast with
an aggregate bandwidth of more than 100 GB/s and sustain
heavy hot-spot traffic with a limited performance degrada-
tion.

1. Introduction

The efficient implementation of collective communica-
tion patterns in a parallel machine is an important factor to
achieve good application performance. Recent analytical
[4] and experimental [7] studies conducted on ASCI-class
machines have shown that scientific codes spend a consid-
erable part of their run time executing collective commu-
nication, in some cases up to 70%. Unfortunately, there
are very few results in the literature that provide an experi-
mental evaluation of the performance and scalability of the
collective communication patterns on large-scale machines.
In fact, due to their high costs, these machines enter in pro-
duction mode very quickly, leaving very little time for per-
formance evaluation and optimization.

�
This work is supported by the U.S. Department of Energy through Los

Alamos National Laboratory contract W-7405-ENG-36

Another issue that has often been neglected is the per-
formance and scalability of the system software on large-
scale machines. As we demonstrated in [3], some col-
lective communication operations can be used as building
blocks for high-performance, scalable resource manage-
ment. For example, our prototype resource-management
system, STORM, relies on two collective communication
operations: multicast and global comparison to perform
most of its tasks. When using a cluster of similar architec-
ture to that of ASCI Q, STORM can exploit collectives to
perform tasks such as job launching and context switching
in sub-second times, even on thousands of nodes.

Some typical uses of several collectives operations are
shown in Table 1. Due to their prevalence and importance,
an efficient and scalable implementation is critical to large-
scale machines. In this paper we will describe how col-
lective communication performs and scales on the ASCI Q
machine (Figure 1), the second largest supercomputer in the
world at the time of this writing.1 The paper provides a
quick overview on the Quadrics network, the backbone of
the ASCI Q machine, to bring the reader up to speed with its
relevant features. We describe the network architecture and
topology of the ASCI Q machine and the main mechanisms
that are at the base of several collective communication pat-
terns. In the final part of the paper, we report an extensive
performance evaluation of the most common patterns, bar-
rier, broadcast, allreduce and hot spot on one of the two
ASCI-Q clusters, containing 1024 nodes with 4 processors
each.

2. Quadrics Network

The Quadrics network [6] is based on two building
blocks, a programmable network interface called Elan
[10] and a communication switch called Elite [11]. Elite
switches can be interconnected in a fat-tree topology [5].

1See http://www.top500.org for more information.



Table 1. Collective communication operation examples

Operations Typical usage

Multicast Applications: Dissemination of data from a single source
Resource management: Binary and data dissemination; job coscheduling

Barrier, global comparison Applications: Process synchronization
Resource management: Heartbeats, fault detection

Allreduce, Scatter-Gather Exchange and processing of multi-source data

Figure 1. The ASCI Q machine at Los Alamos
National Laboratory

The network has several layers of communication libraries
which provide trade-offs between performance and ease of
use. Other important features are hardware support for col-
lective communication patterns and fault-tolerance.

The Elan network interface links the high-performance,
multi-stage Quadrics network to a processing node contain-
ing one or more CPUs. In addition to generating and accept-
ing packets to and from the network, the Elan also provides
substantial local processing power to implement communi-
cation protocols.

The other building block of the Quadrics network is the
Elite switch. The Elite provides the following features: (1)
8 bidirectional links supporting two virtual channels in each
direction, (2) an internal full-crossbar switch, (3) a nominal
transmission bandwidth of 400 MB/s on each link direction
and a flow-through latency of ��� ns, (4) packet error detec-
tion and recovery, with routing and data transactions CRC
protected, (5) two priority levels combined with an aging
mechanism to ensure a fair delivery of packets in the same
priority level, (6) hardware support for broadcasts, (7) and
adaptive routing.

3. Network Topology

The Elite switches are typically interconnected in a qua-
ternary fat-tree topology, which belongs to the more gen-
eral class of the � -ary � -trees [8]. A quaternary fat-tree
of dimension � is composed of ��� processing nodes and
� � ����	�
 switches interconnected as a delta network, and
can be recursively build by connecting 4 quaternary fat trees
of dimension ���� .

The Elite switches can be assembled using a limited set
of packages. The main building block is a board with 8
Elite switches that implements a two-level fat tree with 16
up and 16 down connections. Four of these boards and a
backplane can be configured as a switch with 64 up and 64
down connections.

The network topology of the ASCI Q machine is out-
lined in Figure 2. At the time of writing, the computer is
divided into two clusters, QA and QB, each one with 1024
nodes/4096 processors, for a total of 2048 nodes/8192 pro-
cessors. Each segment is a full fat tree of dimension five and
is organized in two levels of switches. The bottom level has
16 switches (labeled as QA/B-B[0-15] in Figure 2) with 64
down links to nodes and 64 up links to top-level switches.
The top level has 64 switches (labeled as QA/B-T[0-63] in
Figure 2) with 16 up and 16 down connections. Each of
the 16 down connections is connected to a distinct bottom
switch. The set of switches at the top, called supertop, con-
nects both segments and is expected to have a reduced level
of connectivity. Within each segment, the network main-
tains a bisection bandwidth that is linear with the number
of processing nodes. Thanks to the wormhole flow control
and to the low latency of the Elite switches, the point-to-
point latency between any pair of nodes is almost constant
and practically insensitive to the network distance.

4. Hardware and Software Support for Collec-
tive Communication

The Quadrics network provides hardware support in
both the network interface and the switches to implement



SUPERTOP

QA-B 0

QA-T 0 QA-T 1

QA-B 1 QA-B 15

QA-T 63

64 Nodes

16 Links

QA

QB-B 15QB-B 0

QB-T 63QB-T 0

64 Nodes

16 Links

1

1

QB

QB-B

QB-T

Figure 2. The network topology of the ASCI Q machine and its building blocks

scalable collective communication. Multicast packets can
be sent to multiple destinations using either the hardware
multicast capability of the network or a software tree im-
plemented with point-to-point messages exchanged by the
Elans without interrupting their processing nodes. These
mechanisms constitute the basic blocks to implement col-
lective communication patterns such as barrier synchroniza-
tion, broadcast, reduce and allreduce.

4.1. Hardware Multicast

The implementation of the hardware multicast is out-
lined in Figure 3. A process in a node injects a multicast
packet into the network (see Figure 3(a)). This packet can
only take a predetermined ascending path in order to avoid
deadlocks. By default, the top leftmost switch is chosen as
the logical root for collective communications, and every
request, in the ascending phase, must pass through the root
switch. In Figure 3(b) the packet reaches the root switch,
and then multiple branches are propagated in parallel. If
another collective communication is issued while the first
one is still in progress, it is serialized at or before the root
switch. The second communication will be able to proceed
when all the circuits of the first one are cleared. All nodes
are capable of receiving a multicast packet, as long as the
multicast set is physically contiguous.

For a multicast packet to be successfully delivered, a
positive acknowledgment must be received from all the re-
cipients of the multicast group. The Elite switches com-
bine the acknowledgments, as pioneered by the NYU Ul-
tracomputer [9], returning a single one to the source (see
Figures 3(c) and 3(d)). Acknowledgments are combined in
a way that the ‘worst’ ack wins (a network error wins over
an unsuccessful transaction, which on its turn wins over a
successful one), returning a positive ack only when all the
partners in the collective communication complete the dis-
tributed transaction with success. The network hardware
guarantees the atomic execution of the multicast: either all
nodes successfully complete the operation or none. It is
worth noting that the multicast packet opens a set of cir-
cuits from the source to the destination set, and that multiple
transactions (up to 16 in the current implementation) can be
pipelined within a single packet. For example, it is possible
to conditionally issue a transaction based on the result of a
previous transaction. This powerful mechanism allows the
efficient implementation of sophisticated collective opera-
tions and high-level protocols [2, 3].

4.2. Software Tree

In the current implementation of the hardware multicast,
the destination set must be physically contiguous. If this is



(a) A process in a node injects a multicast packet into the network (b) The packet reaches the destinations passing through the root
switch at the top level

(c) The acknowledgments are combined (d) The issuing process receives a single acknowledgment

Figure 3. Hardware multicast

not the case, or there exists the need to execute more com-
plex protocols that require fast packet processing, it is pos-
sible to take advantage of the thread processor in the Elan.
The Elan thread processor can receive an incoming packet,
perform some basic processing (e.g., an atomic increment
of a variable) and send one or more replies in a few � s,
without any interaction with the main processor.

Software collectives can be implemented using the com-
munication and computation capabilities of the Elan thread
processor, e.g., software multicast trees. Software collec-
tives can be based on trees with programmable arity, depth
and regularity, and do not suffer from the limitation that the
destination set must be composed of adjacent nodes.

4.3. Barrier Synchronization

A barrier synchronization is a logical point in the con-
trol flow of a parallel program at which all processes in the
group must arrive before any of the them is allowed to pro-
ceed. Typically, a barrier synchronization involves a logical
reduce operation followed by a broadcast.

If all the nodes in the barrier synchronization set are con-
tiguous, it is possible to use the hardware multicast. When
the barrier is performed, all processes in the group write a
barrier sequence number in a memory location and wait for
a global ‘go’ signal (e.g., polling on a memory location).
The master process within the root node (the one with the
lowest id) uses an Elan thread to send a special test-and-set
multicast packet. This packet spans all the processes and
checks if the barrier sequence value in each process matches
with its own sequence number (it does if the corresponding
process reached the barrier). All the replies are then com-

bined by the Elite switches on the way back to the root node
which receives a single acknowledgment. If all the nodes
are ready, an end-of-packet token is sent to the group to set
an event or write a word to wake up the processes waiting
in the barrier. This mechanism is completely integrated into
the network flow control and is expected to give the best
performance when processes enter the barrier fairly close
together, otherwise it backs off exponentially (to stop flood-
ing the network with test-and-set multicast packets).

The software algorithm based on point-to-point mes-
sages uses a balanced tree to send a ‘ready’ signal to the
process with lowest id. Each process in the tree waits for
‘ready’ signals from its children, and when it receives all
of them sends its own signal up to the parent process. This
phase of the barrier is illustrated in Figure 4. When the root
process receives all its ‘ready’ signals, it performs a broad-
cast using point-to-point messages to send the ‘go’ signal
with the same tree structure.

4.4. Broadcast

The broadcast operation consists of a root node send-
ing a chunk of data to multiple destinations. The user-level
broadcast can take advantage of the hardware multicast.
The current implementation requires the destination buffer
to be at the same virtual address in all destinations. In the
more general case where there are multiple destination pro-
cesses on the same node, the original message is initially
sent into a piece of shared memory, and the destination pro-
cesses makes private copies using a double buffering tech-
nique.



(1)

(2)

Root Node

(1) (1) (1)

10

0

5 9 13

12 14 1511876432

1

Figure 4. A software tree implemented with
point-to-point messages between Elan net-
work interfaces

4.5. Allreduce

A common collective communication pattern in many
scientific codes is the allreduce. The allreduce computes
an arithmetic operation on all the elements of a vector (e.g.,
a floating-point sum) distributed on a set of processes, col-
lects the result and updates another vector of the same size
with the final result on all processes. The allreduce is log-
ically organized into two phases: the collection phase and
the distribution phase. The collection phase can be imple-
mented with point-to-point messages. Given that the se-
mantics of the operation require an arithmetic operation,
every time a message is received the host processor must
intervene. For the distribution phase, we can use the broad-
cast algorithms.

4.6. Hot Spot

One of the most demanding types of communication is
the hot spot. All nodes send messages to a single node,
which becomes the hot spot. This pattern is representative
of system network traffic (e.g. a metadata server in a paral-
lel file system) rather than user-level communication.

5. Experimental Results

In this section, we present results on a 1024-node/4096-
process segment, that is, one cluster of the ASCI Q machine,
for the above-mentioned communication patterns.

The results for both the hardware-based and the
software-based barrier synchronization are shown in Fig-
ure 5. As expected, the one based on the hardware multicast

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y 

(µ
s)

Network Size (nodes)

HW Barrier
SW Barrier

Figure 5. Barrier synchronization

140

160

180

200

220

240

260

2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Network Size (nodes)

Figure 6. Broadcast

is faster than the software one that uses point-to-point mes-
sages. In both cases the latency for the largest configuration
is impressive: 10 � s for the hardware barrier and 30 � s for
the software one. The network is capable of synchronizing
1024 nodes with a latency comparable to a single point-to-
point communication in most commodity networks [1].

The broadcast bandwidth seen at the source node is
shown in Figure 6. In order to compute the aggregate band-
width, we multiply this value by the number of nodes. With
the largest configuration, the total bandwidth is 140 MB/sec

� 1024 = 140 GB/sec. The performance degradation that
is experienced when we increase the number of nodes is
mostly related to the delays of the communication proto-
col, and reflects the number of levels in the fat tree. In fact,
a multicast packet is blocked until all of its children send
an acknowledgment, and is therefore very sensitive to even
minor delays.



0

20

40

60

80

100

120

140

160

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y 

(µ
s)

Network Size (nodes)

Figure 7. Allreduce

100

120

140

160

180

200

220

240

260

280

300

2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Network Size (nodes)

Figure 8. Hot Spot

The performance of the allreduce is again relatively high.
In the collection phase the processing nodes must perform
the arithmetic operation, slowing down the execution of the
communication pattern. In the largest configuration the la-
tency is only 160 � s.

Finally, in Figure 8 we can see the effect of the hot spot.
The performance drop for configurations of more than 128
nodes is caused by a glitch in the low-level communication
protocol. The largest packet size is only 384 bytes, and the
hot node is blocked receiving a packet until the circuit be-
tween source and destination is released. This introduces a
communication gap when the network has many levels be-
cause the packet is not large enough to cover the receipt of
the acknowledgment at the source node.

6 Conclusion

We presented some performance results that prove the
high scalability of the interconnection network of the
ASCI Q machine. These results show that it is possible to
execute collective communication patterns on a large con-
figuration in a scalable way. In fact, in this cluster of 4096
processors, barrier synchronization broadcasts, and allre-
duce operations are achieved with a latency comparable to
a single point-to-point communication in most commodity
networks.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulaw-
ick, C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29–36, Feb. 1995. Available from http://www.
myri.com/research/publications/Hot.ps.

[2] J. Fernandez, F. Petrini, and E. Frachtenberg. BCS MPI: A
New Approach in the System Software Design for Large-
Scale Parallel Computers. In Proceedings of IEEE/ACM Su-
percomputing 2003 (SC’03), Phoenix, AZ, November 2003.

[3] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and
S. Coll. STORM: Lightning-Fast Resource Management. In
Proceedings of IEEE/ACM Supercomputing 2002 (SC’02),
Baltimore, MD, November 2002.

[4] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasser-
man, and M. Gittings. Predictive Performance and
Scalability Modeling of a Large-Scale Application. In
IEEE/ACM SC2001, Denver, CO, November 2001. Avail-
able from http://www.c3.lanl.gov/˜fabrizio/
papers/sc01.pdf.

[5] C. E. Leiserson. Fat-Trees: Universal Networks for
Hardware-Efficient Supercomputing. IEEE Transactions on
Computers, C-34(10):892–901, Oct. 1985.

[6] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics Network: High-Performance Clustering Tech-
nology. IEEE Micro, 22(1):46–57, Jan./Feb. 2002. Avail-
able from http://www.c3.lanl.gov/˜fabrizio/
papers/ieeemicro.pdf.

[7] F. Petrini, D. Kerbyson, and A. Hoisie. Further Improve-
ments in ASCI Q Performance and Variability. Technical
Report LAUR-03-1031, Los Alamos National Laboratory,
March 2003.

[8] F. Petrini and M. Vanneschi. Performance Analysis of
Wormhole Routed

�
-ary � -trees. International Journal

on Foundations of Computer Science, 9(2):157–177, June
1998.

[9] G. F. Pfister and V. A. Norton. “Hot Spot” Contention and
Combining in Multistage Interconnection Networks. IEEE
Transactions on Computers, C-34(10):943–948, Oct. 1985.

[10] Quadrics Supercomputers World Ltd. Elan Reference Man-
ual, Jan. 1999.

[11] Quadrics Supercomputers World Ltd. Elite Reference Man-
ual, Nov. 1999.


